PredefinedCurves
VortexPasta.PredefinedCurves
— ModulePredefinedCurves
Module defining some commonly used parametric curves.
Exported curves
VortexPasta.PredefinedCurves.Ring
— TypeRing(; r = Returns(0), z = Returns(0))
Describes a circular ring in 3D space.
By default, the ring has radius $R = 1$, it is defined on the XY plane, and its centre is located at (0, 0, 0)
.
The circular ring can be optionally perturbed in the radial and orthogonal (Z) directions using user-defined functions $r(t)$ and $z(t)$ respectively. These functions must be periodic with period 1. For example, one can pass r(t) = 0.1 * cos(2πmt)
for a mode $m$ sinusoidal perturbation (associated to a wavelength $λ = 2πR/m$) whose amplitude is 10% of the ring radius.
Moreover, the geometry can be modified via the optional transform
and translate
arguments of the define_curve
function.
Definition
\[\begin{aligned} x(t) &= (1 + r(t)) \, \cos(2πt) \\ y(t) &= (1 + r(t)) \, \sin(2πt) \\ z(t) &= z(t) \end{aligned}\]
for $t ∈ [0, 1]$.
Examples
Define a circular ring of radius 2:
julia> p = Ring();
julia> S = define_curve(p; scale = 2); # scale the curve by 2 (to get radius = 2)
julia> ts = range(0, 1; length = 16 + 1);
julia> S.(ts)
17-element Vector{SVector{3, Float64}}:
[2.0, 0.0, 0.0]
[1.8477590650225735, 0.7653668647301796, 0.0]
[1.4142135623730951, 1.414213562373095, 0.0]
[0.7653668647301796, 1.8477590650225735, 0.0]
[0.0, 2.0, 0.0]
[-0.7653668647301796, 1.8477590650225735, 0.0]
[-1.4142135623730951, 1.414213562373095, 0.0]
[-1.8477590650225735, 0.7653668647301796, 0.0]
[-2.0, 0.0, 0.0]
[-1.8477590650225735, -0.7653668647301796, 0.0]
[-1.4142135623730951, -1.414213562373095, 0.0]
[-0.7653668647301796, -1.8477590650225735, 0.0]
[0.0, -2.0, 0.0]
[0.7653668647301796, -1.8477590650225735, 0.0]
[1.4142135623730951, -1.414213562373095, 0.0]
[1.8477590650225735, -0.7653668647301796, 0.0]
[2.0, 0.0, 0.0]
Define a circular ring of radius 4 with a radial perturbation of 10%:
julia> rfun(t) = 0.1 * cospi(4t); # this is a mode m = 2 perturbation with 10% amplitude
julia> p = Ring(r = rfun);
julia> S = define_curve(p; scale = 4);
julia> S.(ts)
17-element Vector{SVector{3, Float64}}:
[4.4, 0.0, 0.0]
[3.9568307230204227, 1.6389729494895986, 0.0]
[2.8284271247461903, 2.82842712474619, 0.0]
[1.4224945094311199, 3.4342055370698716, 0.0]
[0.0, 3.6, 0.0]
[-1.4224945094311199, 3.4342055370698716, 0.0]
[-2.8284271247461903, 2.82842712474619, 0.0]
[-3.9568307230204227, 1.6389729494895986, 0.0]
[-4.4, 0.0, 0.0]
[-3.9568307230204227, -1.6389729494895986, 0.0]
[-2.8284271247461903, -2.82842712474619, 0.0]
[-1.4224945094311199, -3.4342055370698716, 0.0]
[0.0, -3.6, 0.0]
[1.4224945094311199, -3.4342055370698716, 0.0]
[2.8284271247461903, -2.82842712474619, 0.0]
[3.9568307230204227, -1.6389729494895986, 0.0]
[4.4, 0.0, 0.0]
VortexPasta.PredefinedCurves.TrefoilKnot
— TypeTrefoilKnot()
Describes a trefoil knot in 3D space.
Definition
Before transformations, the trefoil knot is defined by:
\[\begin{aligned} x(u) &= \sin u + 2 \sin 2u \\ y(u) &= \cos u - 2 \cos 2u \\ z(u) &= -\sin 3u \end{aligned}\]
for $u = 2πt ∈ [0, 2π]$.
VortexPasta.PredefinedCurves.Lemniscate
— TypeLemniscate(; Az = 0,)
Describes a lemniscate (or figure-eight curve) in 3D space.
The specific definition used here corresponds to the lemniscate of Bernoulli on the XY plane. Under the normalised parametrisation $x⃗(t)$ with $t ∈ [0, 1]$, the curve crosses the origin at $t = 1/4$ and $t = 3/4$, intersecting itself at that point.
One can perturb the curve in the third direction by passing a non-zero value of Az
so that the curve doesn't exactly intersect itself.
Definition
\[\begin{aligned} x(u) &= \frac{\cos u}{1 + \sin^2 u} \\ y(u) &= \frac{\sin u \, \cos u}{1 + \sin^2 u} \\ z(u) &= A_z \sin u \end{aligned}\]
for $u = 2πt ∈ [0, 2π]$.
VortexPasta.PredefinedCurves.PeriodicLine
— TypePeriodicLine(; x = Returns(0), y = Returns(0), r = Returns(0))
Describes an infinite (but unclosed) line which repeats itself periodically.
Definition
By default, this defines a straight infinite line passing through the origin and oriented in the Z direction.
The line can be perturbed along the X and/or Y directions using user-defined functions $x(t)$ and $y(t)$ which must be periodic with period $T = 1$. Alternative, one can pass a complex function $r(t) = x(t) + im * y(t)$, which may be more convenient in some cases.
The line is defined by:
\[\begin{aligned} x(t) &= x(t) + ℜ[r(t)] \\ y(t) &= y(t) + ℑ[r(t)] \\ z(t) &= t - 1/2 \end{aligned}\]
for $t ∈ [0, 1]$. Note that the line is "centred" at $z = 0$, in the sense that $z(1/2) = 0$.
Note that one can change the default period $T = 1$ of the curve using the scale
argument of define_curve
. See below for some examples.
Examples
Define a $2π$-periodic curve with a sinusoidal perturbation along X:
julia> xfun(t) = 0.1 * sinpi(2t) # this function satisfies having period T = 1
xfun (generic function with 1 method)
julia> p = PeriodicLine(x = xfun);
julia> S = define_curve(p; scale = 2π); # we scale the curve by 2π (this also scales the perturbation amplitude!)
julia> ts = range(0, 1; length = 16 + 1);
julia> S.(ts)
17-element Vector{SVector{3, Float64}}:
[0.0, 0.0, -3.141592653589793]
[0.24044709195373853, 0.0, -2.748893571891069]
[0.4442882938158367, 0.0, -2.356194490192345]
[0.5804906304278862, 0.0, -1.9634954084936207]
[0.6283185307179586, 0.0, -1.5707963267948966]
[0.5804906304278862, 0.0, -1.1780972450961724]
[0.4442882938158367, 0.0, -0.7853981633974483]
[0.24044709195373853, 0.0, -0.39269908169872414]
[0.0, 0.0, 0.0]
[-0.24044709195373853, 0.0, 0.39269908169872414]
[-0.4442882938158367, 0.0, 0.7853981633974483]
[-0.5804906304278862, 0.0, 1.1780972450961724]
[-0.6283185307179586, 0.0, 1.5707963267948966]
[-0.5804906304278862, 0.0, 1.9634954084936207]
[-0.4442882938158367, 0.0, 2.356194490192345]
[-0.24044709195373853, 0.0, 2.748893571891069]
[0.0, 0.0, 3.141592653589793]
Note that the amplitude of the resulting curve is not the original $0.1$ but instead $0.1 × 2π = 0.6823…$. This is because passing scale = 2π
scales the curve in all directions, including the direction of the perturbation.
Instead, if one wanted to keep the original perturbation while extending the curve period from $1$ to $2π$, one would need to apply scaling only along the Z direction:
julia> using StaticArrays: SDiagonal
julia> S = define_curve(p; scale = SDiagonal(1, 1, 2π));
julia> S.(ts)
17-element Vector{SVector{3, Float64}}:
[0.0, 0.0, -3.141592653589793]
[0.03826834323650898, 0.0, -2.748893571891069]
[0.07071067811865477, 0.0, -2.356194490192345]
[0.09238795325112868, 0.0, -1.9634954084936207]
[0.1, 0.0, -1.5707963267948966]
[0.09238795325112868, 0.0, -1.1780972450961724]
[0.07071067811865477, 0.0, -0.7853981633974483]
[0.03826834323650898, 0.0, -0.39269908169872414]
[0.0, 0.0, 0.0]
[-0.03826834323650898, 0.0, 0.39269908169872414]
[-0.07071067811865477, 0.0, 0.7853981633974483]
[-0.09238795325112868, 0.0, 1.1780972450961724]
[-0.1, 0.0, 1.5707963267948966]
[-0.09238795325112868, 0.0, 1.9634954084936207]
[-0.07071067811865477, 0.0, 2.356194490192345]
[-0.03826834323650898, 0.0, 2.748893571891069]
[0.0, 0.0, 3.141592653589793]
Now the perturbation amplitude is $0.1$ as we wanted.
Functions
VortexPasta.PredefinedCurves.define_curve
— Functiondefine_curve(
p::ParametricCurve;
scale = 1, rotate = LinearAlgebra.I, translate = 0,
orientation::Int = 1,
) -> Function
Return the definition of the parametric curve p
as a function.
The returned function S(t)
returns a coordinate $x⃗$ for any given value of the scalar parameter $t ∈ [0, 1]$. In particular, closed curves satisfy S(0) == S(1)
.
Optional arguments
Coordinate transformations
The original curve can be transformed by (1) scaling, (2) rotation and (3) translation operations. Note that transformations are applied in that order.
scale
: scales the curve by a given factor. The argument can be a scalar value for isotropic scaling (same scaling in all directions) or aTuple
of values for anisotropic scaling (see below for some examples).rotate
: in 3D, this should be a 3×3 orthogonal matrix describing pure rotation. For convenience, one can use the Rotations.jl package for defining such rotations using different parametrisations (see below for some examples).translate
: a scalar or a vector describing a translation operation. Note that translations are performed after scaling and rotation.
Curve orientation
orientation
: allows to set the curve orientation. In particular, this determines the orientation of the tangent vector along the curve. Should be either1
or-1
.
Extended help
Examples
Translated and scaled circular ring
Define a circular ring of radius $R = 2$ centred at $x⃗₀ = (0, 0, 1)$ and evaluate its coordinates over equispaced points.
julia> S = define_curve(Ring(); translate = (0, 0, 1), scale = 2);
julia> ts = range(0, 1; length = 16 + 1)
0.0:0.0625:1.0
julia> S.(ts)
17-element Vector{SVector{3, Float64}}:
[2.0, 0.0, 1.0]
[1.8477590650225735, 0.7653668647301796, 1.0]
[1.4142135623730951, 1.4142135623730951, 1.0]
[0.7653668647301796, 1.8477590650225735, 1.0]
[0.0, 2.0, 1.0]
[-0.7653668647301796, 1.8477590650225735, 1.0]
[-1.4142135623730951, 1.4142135623730951, 1.0]
[-1.8477590650225735, 0.7653668647301796, 1.0]
[-2.0, 0.0, 1.0]
[-1.8477590650225735, -0.7653668647301796, 1.0]
[-1.4142135623730951, -1.4142135623730951, 1.0]
[-0.7653668647301796, -1.8477590650225735, 1.0]
[0.0, -2.0, 1.0]
[0.7653668647301796, -1.8477590650225735, 1.0]
[1.4142135623730951, -1.4142135623730951, 1.0]
[1.8477590650225735, -0.7653668647301796, 1.0]
[2.0, 0.0, 1.0]
Anisotropic scaling: ellipse from circular ring
If one wants an ellipse instead of a circle, one can simply apply an anisotropic scaling transformation:
julia> using LinearAlgebra
julia> S = define_curve(Ring(); scale = (2, 1, 1));
julia> S.(ts)
17-element Vector{SVector{3, Float64}}:
[2.0, 0.0, 0.0]
[1.8477590650225735, 0.3826834323650898, 0.0]
[1.4142135623730951, 0.7071067811865476, 0.0]
[0.7653668647301796, 0.9238795325112867, 0.0]
[0.0, 1.0, 0.0]
[-0.7653668647301796, 0.9238795325112867, 0.0]
[-1.4142135623730951, 0.7071067811865476, 0.0]
[-1.8477590650225735, 0.3826834323650898, 0.0]
[-2.0, 0.0, 0.0]
[-1.8477590650225735, -0.3826834323650898, 0.0]
[-1.4142135623730951, -0.7071067811865476, 0.0]
[-0.7653668647301796, -0.9238795325112867, 0.0]
[0.0, -1.0, 0.0]
[0.7653668647301796, -0.9238795325112867, 0.0]
[1.4142135623730951, -0.7071067811865476, 0.0]
[1.8477590650225735, -0.3826834323650898, 0.0]
[2.0, 0.0, 0.0]
Rotated circular ring
If we wanted a circular ring defined on the YZ plane instead of the default XZ plane, we can achieve this by rotating the original curve by 90° about the Y axis.
julia> using Rotations: RotY # there's also RotX and RotZ
julia> rot = RotY(π / 2) # rotation of 90° about the Y axis
3×3 RotY{Float64} with indices SOneTo(3)×SOneTo(3)(1.5708):
6.12323e-17 0.0 1.0
0.0 1.0 0.0
-1.0 0.0 6.12323e-17
julia> rot = SMatrix(replace(x -> abs(x) < 1e-16 ? zero(x) : x, rot)) # remove spurious near-zero values
3×3 SMatrix{3, 3, Float64, 9} with indices SOneTo(3)×SOneTo(3):
0.0 0.0 1.0
0.0 1.0 0.0
-1.0 0.0 0.0
julia> S = define_curve(Ring(); scale = 2, rotate = rot);
julia> S.(ts)
17-element Vector{SVector{3, Float64}}:
[0.0, 0.0, -2.0]
[0.0, 0.7653668647301796, -1.8477590650225735]
[0.0, 1.4142135623730951, -1.4142135623730951]
[0.0, 1.8477590650225735, -0.7653668647301796]
[0.0, 2.0, 0.0]
[0.0, 1.8477590650225735, 0.7653668647301796]
[0.0, 1.4142135623730951, 1.4142135623730951]
[0.0, 0.7653668647301796, 1.8477590650225735]
[0.0, 0.0, 2.0]
[0.0, -0.7653668647301796, 1.8477590650225735]
[0.0, -1.4142135623730951, 1.4142135623730951]
[0.0, -1.8477590650225735, 0.7653668647301796]
[0.0, -2.0, 0.0]
[0.0, -1.8477590650225735, -0.7653668647301796]
[0.0, -1.4142135623730951, -1.4142135623730951]
[0.0, -0.7653668647301796, -1.8477590650225735]
[0.0, 0.0, -2.0]
More generally, to rotate about an arbitrary axis ê = [ex, ey, ez]
by an angle θ
(in radians), one can use rot = AngleAxis(θ, ex, ey, ez)
from the Rotations.jl package.
Random rotations
In addition, the Rotations.jl package allows to easily generate random and uniformly distributed rotations:
julia> using Rotations: QuatRotation # parametrise rotations using quaternions
julia> using Random: MersenneTwister
julia> rng = MersenneTwister(42);
julia> rot = rand(rng, QuatRotation) # uniformly distributed random rotation
3×3 QuatRotation{Float64} with indices SOneTo(3)×SOneTo(3)(QuaternionF64(0.923391, -0.0602724, 0.307861, 0.22122)):
0.712566 -0.445655 0.541886
0.371433 0.894858 0.24752
-0.59522 0.0249001 0.803177
julia> S = define_curve(Ring(); scale = 2, rotate = rot);
julia> S.(ts)
17-element Vector{SVector{3, Float64}}:
[1.4251329706813418, 0.7428666122301657, -1.190439083830269]
[0.9755612628402096, 1.3712140745918031, -1.0807646293652284]
[0.37746919621652514, 1.790806624183378, -0.806553557235094]
[-0.27808913376434097, 1.9377650989455064, -0.4095520174421194]
[-0.8913109140138611, 1.7897164032775457, 0.04980010440813476]
[-1.3688386873583265, 1.3691996090301746, 0.501570611801321]
[-1.637973179106087, 0.7402345861333226, 0.8769815402966743]
[-1.6577411025987892, -0.00142444225909442, 1.1188799791393182]
[-1.4251329706813418, -0.7428666122301657, 1.190439083830269]
[-0.9755612628402096, -1.3712140745918031, 1.0807646293652284]
[-0.37746919621652514, -1.790806624183378, 0.806553557235094]
[0.27808913376434097, -1.9377650989455064, 0.4095520174421194]
[0.8913109140138611, -1.7897164032775457, -0.04980010440813476]
[1.3688386873583265, -1.3691996090301746, -0.501570611801321]
[1.637973179106087, -0.7402345861333226, -0.8769815402966743]
[1.6577411025987892, 0.00142444225909442, -1.1188799791393182]
[1.4251329706813418, 0.7428666122301657, -1.190439083830269]