References
- Arms, R. J. and Hama, F. R. (1965). Localized-induction concept on a curved vortex and motion of an elliptic vortex ring. Phys. Fluids 8, 553–559.
- Arnold, A. and Holm, C. (2005). Efficient Methods to Compute Long-Range Interactions for Soft Matter Systems. In: Advanced Computer Simulation Approaches for Soft Matter Sciences II, Advances in Polymer Science, edited by Holm, C. and Kremer, K. (Springer, Berlin, Heidelberg); pp. 59–109.
- Baggaley, A. W. and Barenghi, C. F. (2011). Spectrum of turbulent Kelvin-waves cascade in superfluid helium. Physical Review B 83, 134509.
- Gamet, L.; Ducros, F.; Nicoud, F. and Poinsot, T. (1999). Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows. International Journal for Numerical Methods in Fluids 29, 159–191.
- Hänninen, R. and Baggaley, A. W. (2014). Vortex filament method as a tool for computational visualization of quantum turbulence. Proceedings of the National Academy of Sciences 111, 4667–4674.
- Polanco, J. I. (2024). Fast and Accurate Evaluation of Biot–Savart Integrals over Spatial Curves, arXiv:2406.07366 [physics].
- Roberts, P. H. and Donnelly, R. J. (1970). Dynamics of Vortex Rings. Physics Letters A 31, 137–138.
- Saffman, P. G. (1993). Vortex Dynamics (Cambridge University Press).
- Sandu, A. (2019). A Class of Multirate Infinitesimal GARK Methods. SIAM J. Numer. Anal. 57, 2300–2327.
- Schwarz, K. W. (1985). Three-dimensional vortex dynamics in superfluid $^4$He: Line-line and line-boundary interactions. Physical Review B 31, 5782–5804.